| 1234567891011121314151617181920212223242526 | package main// G(n) -> number of unique binary search tree of [1...n]// F(i, n) -> ... of [1...n] while i is root// G(n) = sum(F(i, n)), i ~ [1...n]// F(i, n) = G(i-1) * G(n-i)// So, G(n) = G(0) * G(n-1) + G(1) * G(n-2) + ... + G(n-1) * G(0)func numTrees(n int) int {	if n == 0 {		return 1	}	G := make([]int, n+1)	G[0], G[1] = 1, 1	for i := 2; i <= n; i++ {		for j := 1; j <= i; j++ {			G[i] += G[j-1] * G[i-j]		}	}	return G[n]}// func main() {// 	fmt.Println(numTrees(0))// 	fmt.Println(numTrees(1))// 	fmt.Println(numTrees(7))// }
 |