1234567891011121314151617181920212223242526 |
- package main
- // G(n) -> number of unique binary search tree of [1...n]
- // F(i, n) -> ... of [1...n] while i is root
- // G(n) = sum(F(i, n)), i ~ [1...n]
- // F(i, n) = G(i-1) * G(n-i)
- // So, G(n) = G(0) * G(n-1) + G(1) * G(n-2) + ... + G(n-1) * G(0)
- func numTrees(n int) int {
- if n == 0 {
- return 1
- }
- G := make([]int, n+1)
- G[0], G[1] = 1, 1
- for i := 2; i <= n; i++ {
- for j := 1; j <= i; j++ {
- G[i] += G[j-1] * G[i-j]
- }
- }
- return G[n]
- }
- // func main() {
- // fmt.Println(numTrees(0))
- // fmt.Println(numTrees(1))
- // fmt.Println(numTrees(7))
- // }
|