|
@@ -0,0 +1,35 @@
|
|
|
+const MOD int = 1000000007
|
|
|
+
|
|
|
+func kInversePairs(n int, k int) int {
|
|
|
+ if k < 0 || n*(n-1)/2 < k { // For n, n-1, ... , 2, 1, k = n*(n-1)/2 -> maximum
|
|
|
+ return 0
|
|
|
+ } else if k == 0 || k == n*(n-1)/2 {
|
|
|
+ return 1
|
|
|
+ }
|
|
|
+ dp := make([][]int, n+1)
|
|
|
+ for i := range dp {
|
|
|
+ dp[i] = make([]int, k+1)
|
|
|
+ }
|
|
|
+ // dp[n][k] means kIP(n, k), so:
|
|
|
+ // dp[n][k] = dp[n-1][k] + dp[n-1][k-1] + ... + dp[n-1][k-n+1]
|
|
|
+ // dp[n][k+1] = dp[n-1][k+1] + dp[n-1][k] + ... + dp[n-1][k+1-n+1]
|
|
|
+ // => dp[n][k+1] = dp[n][k] + dp[n-1][k+1] - dp[n-1][k-n+1]
|
|
|
+ dp[2][0], dp[2][1] = 1, 1
|
|
|
+ for i := 3; i <= n; i++ {
|
|
|
+ dp[i][0] = 1
|
|
|
+ for j := 1; j <= minInt(k, i*(i-1)/2); j++ {
|
|
|
+ dp[i][j] = (dp[i][j-1] + dp[i-1][j]) % MOD
|
|
|
+ if j >= i {
|
|
|
+ dp[i][j] = (dp[i][j] + MOD - dp[i-1][j-i]) % MOD
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return dp[n][k]
|
|
|
+}
|
|
|
+
|
|
|
+func minInt(x, y int) int {
|
|
|
+ if x < y {
|
|
|
+ return x
|
|
|
+ }
|
|
|
+ return y
|
|
|
+}
|